中国熟妇浓毛hdsex,亚洲精品V天堂中文字幕,欧美最猛性xxxxx69,香蕉久久久久久av成人

您好 歡迎來到超硬材料網(wǎng)  | 免費(fèi)注冊
遠(yuǎn)發(fā)信息:磨料磨具行業(yè)的一站式媒體平臺(tái)磨料磨具行業(yè)的一站式媒體平臺(tái)
手機(jī)資訊手機(jī)資訊
官方微信官方微信
鄭州華晶金剛石股份有限公司

論文推介丨金剛石化學(xué)機(jī)械拋光研究進(jìn)展

關(guān)鍵詞 金剛石化學(xué)機(jī)械拋光|2024-12-13 11:44:49|來源 人工晶體學(xué)報(bào)
摘要 金剛石以優(yōu)異的性能在力學(xué)、光學(xué)、熱學(xué)和電子學(xué)(如半導(dǎo)體)等領(lǐng)域發(fā)揮著重要作用。然而,金剛石表面質(zhì)量會(huì)影響其在這些領(lǐng)域的應(yīng)用效果,因此通過高效拋光技術(shù)獲得高質(zhì)量表面一直是金剛石研究的...

       金剛石以優(yōu)異的性能在力學(xué)、光學(xué)、熱學(xué)和電子學(xué)(如半導(dǎo)體)等領(lǐng)域發(fā)揮著重要作用。然而,金剛石表面質(zhì)量會(huì)影響其在這些領(lǐng)域的應(yīng)用效果,因此通過高效拋光技術(shù)獲得高質(zhì)量表面一直是金剛石研究的重點(diǎn)內(nèi)容。金剛石拋光技術(shù)主要有機(jī)械拋光、熱化學(xué)拋光、激光拋光和化學(xué)機(jī)械拋光等,其中化學(xué)機(jī)械拋光(CMP)具有設(shè)備運(yùn)行成本低、工藝簡單、拋光后表面損傷小等優(yōu)點(diǎn)。

       近日,北方工業(yè)大學(xué)安康副教授聯(lián)合北京科技大學(xué)李成明研究團(tuán)隊(duì)在《人工晶體學(xué)報(bào)》2024年第10期發(fā)表了題為《金剛石化學(xué)機(jī)械拋光研究進(jìn)展》的綜述論文(第一作者:安康;通信作者:劉峰斌、李成明)。該論文在對幾種拋光方法進(jìn)行分析對比的基礎(chǔ)上,聚焦于CMP領(lǐng)域,對其發(fā)展歷程進(jìn)行了較詳盡的對比與分析。早期CMP技術(shù)雖在工藝和拋光效率上存在一定局限,但為后續(xù)技術(shù)的創(chuàng)新與優(yōu)化奠定了基礎(chǔ);H2O2及其混合物的應(yīng)用,不僅增強(qiáng)了CMP過程中的化學(xué)反應(yīng)活性,提高了材料去除率,還有效降低了表面粗糙度,改善了金剛石表面質(zhì)量;光催化輔助化學(xué)機(jī)械拋光可使金剛石達(dá)到高表面質(zhì)量,但設(shè)備相對復(fù)雜,無法滿足大規(guī)模生產(chǎn)的需求,需要進(jìn)一步研究和優(yōu)化。此外,本文還對化學(xué)機(jī)械拋光的未來發(fā)展進(jìn)行了預(yù)測,為相關(guān)領(lǐng)域研究人員提供參考。

       論文題錄●●

       安康, 許光宇, 吳海平, 張亞琛, 張永康, 李利軍, 李鴻, 張旭芳, 劉峰斌, 李成明. 金剛石化學(xué)機(jī)械拋光研究進(jìn)展[J]. 人工晶體學(xué)報(bào), 2024, 53(10): 1675-1687.

AN Kang, XU Guangyu, WU Haiping, ZHANG Yachen, ZHANG Yongkang, LI Lijun, LI Hong, ZHANG Xufang, LIU Fengbin, LI Chengming. Research Progress in Chemical Mechanical Polishing of Diamond[J]. Journal of Synthetic Crystals, 2024, 53(10): 1675-1687.

       章節(jié)結(jié)構(gòu)

       0 引言

       1 金剛石的拋光方法

       2 金剛石的化學(xué)機(jī)械拋光

       2.1 早期化學(xué)機(jī)械拋光

       2.2 H2O2及其混合物化學(xué)機(jī)械拋光

       2.3 光催化輔助化學(xué)機(jī)械拋光

       3 金剛石化學(xué)機(jī)械拋光的原子級(jí)去除機(jī)理研究

       4 結(jié)語與展望

       文章導(dǎo)讀

       當(dāng)前,金剛石的表面拋光技術(shù)主要有機(jī)械拋光、熱化學(xué)拋光、激光拋光(laser polishing, LP)、離子束拋光(ion beam polishing, IBP)、等離子體輔助拋光(plasma assisted polishing, PAP)和CMP等。

機(jī)械拋光是最常用的金剛石拋光方法,拋光示意圖如圖1所示。拋光時(shí),含有金剛石粉的拋光盤高速旋轉(zhuǎn),通過樣品臺(tái)向下施加壓力,實(shí)現(xiàn)材料的去除。機(jī)械拋光會(huì)造成金剛石工件的表面損傷和亞表面損傷,拋光過程中的機(jī)械沖擊會(huì)導(dǎo)致拋光表面形成凹坑、亞表面裂紋和晶格損傷,亞表面裂紋和晶格損傷無法通過后續(xù)的拋光步驟消除,且難以被光學(xué)設(shè)備檢測。

image.png

圖1 機(jī)械拋光裝置示意圖

       熱化學(xué)拋光是以碳原子在熱金屬中的擴(kuò)散、金剛石轉(zhuǎn)化為石墨和金剛石的氧化為基礎(chǔ)的拋光技術(shù);熱化學(xué)拋光時(shí),金剛石膜在真空、氫氣或惰性氣體氣氛下,在加熱到750~1000 ℃的熱鐵光盤上轉(zhuǎn)動(dòng)摩擦,在高溫條件下,通過碳原子向鐵質(zhì)拋光盤擴(kuò)散來實(shí)現(xiàn)金剛石膜的平整化;激光拋光通過激光束照射到金剛石厚膜表面,使金剛石膜表面溫度升高,進(jìn)而使被加熱的金剛石表面碳原子氣化和石墨化,達(dá)到去除材料的目的;離子束拋光利用氧或具有較大濺射率的惰性氣體(Ar)離子,對金剛石膜進(jìn)行濺射刻蝕,可實(shí)現(xiàn)精細(xì)化拋光;等離子體輔助拋光同樣用于金剛石精細(xì)化拋光,可提高金剛石表面光潔度,Yamamura等[41]采用PAP技術(shù)對CVD單晶金剛石進(jìn)行拋光,先使用含水蒸氣的氬基等離子體對拋光板和單晶金剛石(100)表面進(jìn)行改性,后在10~52.6 kPa的拋光壓力下對單晶金剛石進(jìn)行拋光,結(jié)果表明,拋光后的表面粗糙度為0.13 nm,如圖2所示。

image.png

圖2 等離子體輔助拋光后的單晶金剛石(100)面AFM照片[41]

       激光拋光、離子束拋光和等離子體輔助拋光在粗拋和精拋領(lǐng)域有著各自的優(yōu)勢,但設(shè)備的使用成本明顯高于其他拋光方法。常見金剛石拋光特點(diǎn)如表1所示。

表1 常見金剛石拋光方法特點(diǎn)

image.png

       化學(xué)機(jī)械拋光(見圖3)是一種超精密拋光的加工方法,通過在機(jī)械拋光過程中加入氧化劑,氧化碳原子提高拋光速率,并且具有表面損傷小、粗糙度低、設(shè)備簡單、運(yùn)行維護(hù)成本低,拋光后的表面污染較輕等優(yōu)點(diǎn),在金剛石拋光領(lǐng)域逐漸受到重視。

image.png

圖3 化學(xué)機(jī)械拋光裝置示意圖[43]

       早期化學(xué)機(jī)械拋光以高溫熔融鹽作為氧化劑進(jìn)行拋光。Yuan等[49]為了降低環(huán)境污染,選用K2FeO4作為氧化劑,在化學(xué)機(jī)械拋光前用不同尺寸的金剛石粉進(jìn)行機(jī)械研磨,使CVD金剛石膜的表面粗糙度降至1.042 nm,之后通過在K2FeO4加入金剛石、B4C、SiC、Al2O3等四種磨料配制拋光液,用H3PO4和NaOH來調(diào)節(jié)拋光液的pH值,拋光溫度為50 ℃。拋光結(jié)果表明,獲得的金剛石表面粗糙度為0.478 nm,無表面劃痕或凹坑,如圖4所示。

image.png

圖4 金剛石表面光學(xué)圖像[49]。(a)機(jī)械拋光;(b)化學(xué)機(jī)械拋光

       為了驗(yàn)證不同種類的氧化劑對化學(xué)機(jī)械拋光的影響,Yuan等[50]開始進(jìn)行對比試驗(yàn),用金剛石粉進(jìn)行機(jī)械拋光后,表面粗糙度下降到48 nm,再用K2FeO4、KIO4、KMnO4和K2CrO7等不同氧化劑在50 ℃的條件下,進(jìn)行10組化學(xué)機(jī)械拋光對比試驗(yàn),拋光機(jī)理如圖5所示,其中在化學(xué)機(jī)械拋光過程中使用K2FeO4拋光出的金剛石表面粗糙度為8.72 nm,具有最佳的表面質(zhì)量。

image.png

圖5 化學(xué)機(jī)械拋光機(jī)理示意圖[50]

       H2O2是一種強(qiáng)氧化劑,使用H2O2溶液作為拋光液,在室溫下進(jìn)行化學(xué)機(jī)械拋光后,可得到原子級(jí)光滑的表面。Kubota等[54]隨后改進(jìn)了工藝,通過在H2O2溶液中用鐵板對金剛石進(jìn)行化學(xué)機(jī)械拋光,設(shè)置工作臺(tái)和樣品臺(tái)的轉(zhuǎn)速均為40 r/min,壓力為3.3 MPa,拋光15 h后,在3 μm×3 μm的面積上,得到Ra=0.784 nm,RMS=1.076 nm的表面,而在500 nm×500 nm的面積上可得到表面粗糙度為0.170 nm,RMS=0.310 nm。反應(yīng)機(jī)理如圖6所示,在Fe2+的催化下,H2O2會(huì)分解成具有強(qiáng)氧化性的·OH,在金剛石表面形成C=O和C—OH等化學(xué)鍵,磨料會(huì)在壓力的作用下與金剛石表面的C=O和C—OH結(jié)合,在剪切力作用下,金剛石表面的C—C鍵會(huì)發(fā)生斷裂,從而實(shí)現(xiàn)C原子去除。

image.png

圖6 基于Fenton反應(yīng)的化學(xué)機(jī)械拋光過程中碳原子的去除機(jī)理示意圖[55]

       為了驗(yàn)證Fe2+對拋光的影響,Yuan等[57]采用機(jī)械研磨和化學(xué)機(jī)械拋光相結(jié)合的方法,利用磨料顆粒和過渡金屬離子進(jìn)行室溫拋光。先進(jìn)行機(jī)械研磨,得到粗糙度約為0.2 μm的金剛石表面。配制質(zhì)量分?jǐn)?shù)為30%的H2O2溶液100 g、去離子水100 g、W0.5金剛石粉10 g、FeSO4水溶液100 g的拋光液,用于化學(xué)機(jī)械拋光處理,拋光時(shí)間為3 h,獲得表面粗糙度0.452 nm的超精密光滑金剛石表面。通過對比實(shí)驗(yàn),發(fā)現(xiàn)相同條件下不含F(xiàn)e2+的拋光液拋光出的金剛石表面粗糙度為0.741 nm,證明了Fe2+的存在增強(qiáng)了拋光效果,如圖7所示。

image.png

圖7 金剛石表面顯微干涉圖像[57]

       Yuan等[55]對比了幾種基于Fenton反應(yīng)的拋光液對金剛石化學(xué)機(jī)械拋光的影響,分別是FeSO4+H2O2、Fe2(SO4)3+H2O2和Fe·OH+H2O2,結(jié)果表明用Fe2(SO4)3+H2O2試劑拋光金剛石,在868 μm×868 μm范圍內(nèi),可得到最低的表面粗糙度0.076 nm,去除率最高可達(dá)752 nm/h。Fe2(SO4)3+H2O2作為拋光劑拋光效果最好的原因是H2O2被快速消耗,金剛石不能被完全氧化,而Fe3+需要消耗H2O2生成Fe2+,然后生成·OH,反應(yīng)速率較慢,因此能夠?qū)饎偸L時(shí)間氧化(見圖8)。

image.png

圖8 氧化前、后金剛石表面SEM照片[55]

       金剛石的帶隙能為5.45 eV,可以在波長小于225 nm的紫外照射下激發(fā)產(chǎn)生空穴和電子對,并立即與大氣中的氧和水分子結(jié)合,成鍵反應(yīng)產(chǎn)生大量的O原子和·OH,使金剛石表面氧化。研究人員基于這一理論,提出了光催化輔助化學(xué)機(jī)械拋光(photocatalytic assisted chemical mechanical polishing, PCMP)法,Anan等[60]用紫外光(UV)輻照拋光單晶金剛石(見圖9),用石英拋光盤對Ib型單晶金剛石進(jìn)行拋光,紫外光可以透過石英拋光盤照射在金剛石表面。拋光前在235 nm×309 nm范圍內(nèi)樣品的表面粗糙度為1.35 nm,經(jīng)過2 h的UV拋光,樣品表面粗糙度達(dá)到0.19 nm,而非UV照射拋光的金剛石表面粗糙度僅為0.74 nm,并在單晶金剛石的(100)面和(110)面均證實(shí)了紫外輻照的有效性。

image.png

圖9 高速水平主軸紫外線拋光機(jī)[60]

       在這一基礎(chǔ)上,有學(xué)者將光催化輔助CMP與Fenton反應(yīng)相結(jié)合,用于提高金剛石表面質(zhì)量,Yang等[63]以納米金剛石(nanodiamond, ND)和CuFe層狀雙氫氧化物(layered double hydroxide, LDH)為原料制備了用于可見光-Fenton反應(yīng)的催化劑,將質(zhì)量分?jǐn)?shù)為20%的H2O2溶液混合ND/LDH催化劑作為拋光液,在拋光過程中開啟可見光源,ND/LDH催化劑在可見光照射下,發(fā)生Fenton反應(yīng)產(chǎn)生具有強(qiáng)氧化性的·OH,單晶金剛石表面的碳原子經(jīng)過·OH氧化,再經(jīng)過機(jī)械作用的處理,得到光滑的表面,實(shí)驗(yàn)裝置如圖10所示。

image.png

圖10 實(shí)驗(yàn)裝置示意圖[63]

       納米TiO2在受到一定波長(387.5 nm)的紫外光照射后,處于價(jià)帶的電子就會(huì)被激發(fā)躍遷到導(dǎo)帶上,同時(shí)在價(jià)帶上產(chǎn)生帶正電的空穴,空穴可以將吸附在TiO2顆粒表面的OH-和H2O氧化,生成具有強(qiáng)氧化性的·OH,原理如圖11所示。

image.png

圖11 TiO2紫外光催化反應(yīng)的原理[66]

       光催化輔助化學(xué)機(jī)械拋光可提高金剛石表面質(zhì)量,達(dá)到納米級(jí)粗糙度。但相比傳統(tǒng)的化學(xué)機(jī)械拋光技術(shù),設(shè)備復(fù)雜度較高,無法滿足大規(guī)模生產(chǎn)的需求,需要進(jìn)一步地研究和優(yōu)化,以提高其實(shí)際應(yīng)用能力。表2對化學(xué)機(jī)械拋光常用氧化劑成分進(jìn)行了總結(jié)。

表2 文獻(xiàn)中化學(xué)機(jī)械拋光常用氧化劑成分總結(jié)

image.png

       分子動(dòng)力學(xué)(molecular dynamics, MD)模擬可以通過高時(shí)間和空間分辨率可視化材料去除的細(xì)節(jié),是一種適合研究原子級(jí)材料去除機(jī)理的方法。Yang等[77]和Liu等[78]均采用分子動(dòng)力學(xué)方法研究了金剛石在金剛石(100)面上摩擦滑動(dòng)時(shí),金剛石晶體表層非晶態(tài)碳的形成和演化過程,模型如圖12所示,模擬結(jié)果表明,在摩擦作用下,金剛石sp3雜化碳向sp2雜化發(fā)生轉(zhuǎn)變,沿[100]方向滑動(dòng)的非晶化速率大于沿[110]方向滑動(dòng)的非晶化速率。

image.png

圖12 金剛石晶體機(jī)械拋光MD模型[78]

       Guo等[58]用分子動(dòng)力學(xué)模擬研究了SiO2磨料在H2O2/純H2O水溶液中化學(xué)機(jī)械拋光金剛石過程中的原子去除機(jī)理,模型如圖13所示。金剛石表面的C與·OH、O和H結(jié)合成為C—OH、C—O、C—H鍵,在機(jī)械拋光的作用下,金剛石表面的C原子以CO、CO2或C鏈的形式被快速去除,從原子尺度上解釋了化學(xué)機(jī)械拋光過程中C原子的去除過程,并進(jìn)一步研究壓力對材料去除率的影響,發(fā)現(xiàn)壓力越大金剛石表面吸附的·OH越多,越有利于C原子的去除。

image.png

圖13 SiO2磨料在H2O2/純H2O水溶液中拋光過程MD示意圖[58]

       結(jié)語與展望

       當(dāng)前金剛石正以每年數(shù)億美元的市場規(guī)模擴(kuò)大應(yīng)用范圍,表面質(zhì)量是影響其應(yīng)用的重要因素。已有多種拋光技術(shù)應(yīng)用于金剛石平整化過程,本綜述對其優(yōu)缺點(diǎn)進(jìn)行了總結(jié)分析?;瘜W(xué)機(jī)械拋光具有較高去除率、高表面質(zhì)量、低加工成本等優(yōu)勢,是一種高效的拋光方法,尤其是H2O2及相關(guān)加工方法的使用,不僅使金剛石表面粗糙度達(dá)到亞納米級(jí),可以獲得超光滑且低損傷的表面,而且降低了化學(xué)污染。未來,實(shí)現(xiàn)金剛石大面積、無亞表面損傷的拋光依舊是其在半導(dǎo)體、熱沉等領(lǐng)域獲得應(yīng)用的重要基礎(chǔ)。

       參考文獻(xiàn)

[1]王小安, 汪建華, 呂琳, 等. 高濃度氬氣對金剛石膜的質(zhì)量、晶粒尺寸和硬度的影響[J]. 金剛石與磨料磨具工程, 2015, 35(5): 20-24.

WANG X A, WANG J H, LV L, et al. Effect of high Ar concentration on quality, grain size and hardness of diamond films[J]. Diamond & Abrasives Engineering, 2015, 35(5): 20-24 (in Chinese).

[2]KHABASHESKU V, FILONENKO V, BAGRAMOV R, et al. Nanoengineered polycrystalline diamond composites with advanced wear resistance and thermal stability[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 59560-59566.

[3]WANG L, BAI G, LI N, et al. Unveiling interfacial structure and improving thermal conductivity of Cu/diamond composites reinforced with Zr-coated diamond particles[J]. Vacuum, 2022, 202: 111133.

[4]WILDI T, KISS M, QUACK N. Diffractive optical elements in single crystal diamond[J]. Optics Letters, 2020, 45(13): 3458.

[5]ZHUANG G L, ZONG W J, TANG Y F, et al. Crystal orientation and material type related suppression to the graphitization wear of micro diamond tool[J]. Diamond and Related Materials, 2022, 127: 109182.

[6]HAO X B, LIU B J, LI Y C, et al. Diamond single crystal-polycrystalline hybrid microchannel heat sink strategy for directional heat dissipation of hot spots in power devices[J]. Diamond and Related Materials, 2023, 135: 109858.

[7]趙正平. 超寬禁帶半導(dǎo)體金剛石功率電子學(xué)研究的新進(jìn)展[J]. 半導(dǎo)體技術(shù), 2021, 46(1): 1-14.

ZHAO Z P. New research progress in ultra wide bandgap semiconductor diamond power electronics[J]. Semiconductor Technology, 2021, 46(1): 1-14 (in Chinese).

[8]ROY S, BALLA V K, MALLIK A K, et al. A comprehensive study of mechanical and chemo-mechanical polishing of CVD diamond[J]. Materials Today: Proceedings, 2018, 5(3): 9846-9854.

[9]CHENG C Y, TSAI H Y, WU C H, et al. An oxidation enhanced mechanical polishing technique for CVD diamond films[J]. Diamond and Related Materials, 2005, 14(3): 622-625.

[10]LUO H, AJMAL K M, LIU W, et al. Polishing and planarization of single crystal diamonds: state-of-the-art and perspectives[J]. International Journal of Extreme Manufacturing, 2021, 3(2): 22003.

[11]SCHRECK M, GSELL S, BRESCIA R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers[J]. Scientific Reports, 2017, 7: 44462.

[12]吳百融, 薛常喜. 機(jī)械研磨單晶金剛石刀具前刀面精度[J]. 金剛石與磨料磨具工程, 2019, 39(2): 21-25.

WU B R, XUE C X. Precision of rake face of mechanically lapped single crystal diamond tool[J]. Diamond & Abrasives Engineering, 2019, 39(2): 21-25 (in Chinese).

[13]LEE Y C, LIN S J, BUCK V, et al. Surface acoustic wave properties of natural smooth ultra-nanocrystalline diamond characterized by laser-induced SAW pulse technique[J]. Diamond and Related Materials, 2008, 17(4): 446-450.

[14]MATSUMAE T, KURASHIMA Y, UMEZAWA H, et al. Room-temperature bonding of single-crystal diamond and Si using Au/Au atomic diffusion bonding in atmospheric air[J]. Microelectronic Engineering, 2018, 195: 68-73.

[15]嚴(yán)朝輝, 汪建華, 滿衛(wèi)東, 等. CVD金剛石厚膜的機(jī)械拋光研究[J]. 金剛石與磨料磨具工程, 2007, 27(3): 32-35.

YAN Z H, WANG J H, MAN W D, et al. Study of mechanical polishing of CVD diamond thick films[J]. Diamond & Abrasives Engineering, 2007, 27(3): 32-35 (in Chinese).

[16]TANG C J, NEVES A J, FERNANDES A J S, et al. A new elegant technique for polishing CVD diamond films[J]. Diamond and Related Materials, 2003, 12(8): 1411-1416.

[17]WEIMA J A, VON BORANY J, GROTZSCHEL R, et al. Investigating contaminants on thermochemically refined surfaces of chemical vapor deposited diamond films[J]. Journal of the Electrochemical Society, 2002, 149(5): G301.

[18]ZONG W J, ZHANG J J, LIU Y, et al. Achieving ultra-hard surface of mechanically polished diamond crystal by thermo-chemical refinement[J]. Applied Surface Science, 2014, 316: 617-624.

[19]OZKAN A M, MALSHE A P, BROWN W D. Sequential multiple-laser-assisted polishing of free-standing CVD diamond substrates[J]. Diamond and Related Materials, 1997, 6(12): 1789-1798.

[20]YOSHIDA A, DEGUCHI M, KITABATAKE M, et al. Atomic level smoothing of CVD diamond films by gas cluster ion beam etching[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996, 112: 248-251.

[21]GROGAN D F, ZHAO T, BOVARD B G, et al. Planarizing technique for ion-beam polishing of diamond films[J]. Applied Optics, 1992, 31(10): 1483-1487.

[22]DU C Y, DAI Y F, GUAN C L, et al. High efficiency removal of single point diamond turning marks on aluminum surface by combination of ion beam sputtering and smoothing polishing[J]. Optics Express, 2021, 29(3): 3738-3753.

[23]LIU N, SUGAWARA K, YOSHITAKA N, et al. Damage-free highly efficient plasma-assisted polishing of a 20-mm square large mosaic single crystal diamond substrate[J]. Scientific Reports, 2020, 10: 19432.

[24]LUO H, AJMAL K M, LIU W, et al. Atomic-scale and damage-free polishing of single crystal diamond enhanced by atmospheric pressure inductively coupled plasma[J]. Carbon, 2021, 182: 175-184.

[25]HAISMA J, VAN DER KRUIS F J H M, SPIERINGS B A C M, et al. Damage-free tribochemical polishing of diamond at room temperature: a finishing technology[J]. Precision Engineering, 1992, 14(1): 20-27.

[26]HITCHINER M P, WILKS E M, WILKS J. The polishing of diamond and diamond composite materials[J]. Wear, 1984, 94(1): 103-120.

[27]HARRIS D C. Materials for infrared windows and domes: properties and performance[Z]. Portland: Copyright Clearance Center, 2000: 24.

[28]ZHENG Y T, YE H T, THORNTON R, et al. Subsurface cleavage of diamond after high-speed three-dimensional dynamic friction polishing[J]. Diamond and Related Materials, 2020, 101: 107600.

[29]LIANG Y F, ZHENG Y T, WEI J J, et al. Effect of grain boundary on polycrystalline diamond polishing by high-speed dynamic friction[J]. Diamond and Related Materials, 2021, 117: 108461.

[30]徐鋒, 左敦穩(wěn), 王珉, 等. CVD金剛石厚膜的機(jī)械拋光及其殘余應(yīng)力的分析[J]. 人工晶體學(xué)報(bào), 2004, 33(3): 436-440.

XU F, ZUO D W, WANG M, et al. Study on mechanical polishing for CVD diamond thick film and its residual stresses[J]. Journal of Synthetic Crystals, 2004, 33(3): 436-440 (in Chinese).

[31]KUBOTA A, NAGAE S, MOTOYAMA S. High-precision mechanical polishing method for diamond substrate using micron-sized diamond abrasive grains[J]. Diamond and Related Materials, 2020, 101: 107644.

[32]AN K, LIU P, ZHANG Y K, et al. Prestressing method to inhibit crack initiation and expansion in a large-sized diamond film during polishing[J]. Diamond and Related Materials, 2024, 144: 111022.

[33]劉敬明, 蔣政, 張恒大, 等. 大面積CVD金剛石膜的熱鐵板拋光[J]. 北京科技大學(xué)學(xué)報(bào), 2001, 23(1): 42-44.

LIU J M, JIANG Z, ZHANG H D, et al. Thermo-chemical polishing of large area CVD diamond films[J]. Chinese Journal of Engineering, 2001, 23(1): 42-44 (in Chinese).

[34]王德政, 周克崧, 韓培剛, 等. 金剛石薄膜機(jī)械拋光的研究[J]. 廣東有色金屬學(xué)報(bào), 1997(1): 43-46.

WANG D Z, ZHOU K S, HAN P G, et al. Research on mechanical polishing of diamond films[J]. Journal of Guangdong Nonferrous Metals, 1997(1): 43-46(in Chinese).

[35]ZAITSEV A M, KOSACA G, RICHARZ B, et al. Thermochemical polishing of CVD diamond films[J]. Diamond and Related Materials, 1998, 7(8): 1108-1117.

[36]馬泳濤, 張建立, 李鈍, 等. 熱鐵盤法拋光CVD金剛石的微觀表面研究[J]. 金剛石與磨料磨具工程, 2008, 28(4): 57-61+65.

MA Y T, ZHANG J L, LI D, et al. Study on micro surfaces of CVD diamond polished by hot metal plate[J]. Diamond & Abrasives Engineering, 2008, 28(4): 57-61+65 (in Chinese).

[37]PRIESKE M, VOLLERTSEN F. Picosecond-laser polishing of CVD-diamond coatings without graphite formation[J]. Materials Today: Proceedings, 2021, 40: 1-4.

[38]KOMLENOK M, PASHININ V, SEDOV V, et al. Femtosecond and nanosecond laser polishing of rough polycrystalline diamond[J]. Laser Physics, 2022, 32(8): 084003.

[39]NAGASE T, KATO H, PAHLOVY S A, et al. Nanosmoothing of single crystal diamond chips by 1 keV Ar+ ion bombardment[J]. Journal of Vacuum Science & Technology B, 2010, 28(2): 263-267.

[40]MI S C, TOROS A, GRAZIOSI T, et al. Non-contact polishing of single crystal diamond by ion beam etching[J]. Diamond and Related Materials, 2019, 92: 248-252.

[41]YAMAMURA K, EMORI K, SUN R, et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing[J]. CIRP Annals, 2018, 67(1): 353-356.

[42]ZHENG Y T, JIA Y W, LIU J L, et al. Surface etching evolution of mechanically polished single crystal diamond with subsurface cleavage in microwave hydrogen plasma: topography, state and electrical properties[J]. Vacuum, 2022, 199: 110932.

[43]XIAO C, HSIA F C, SUTTON-COOK A, et al. Polishing of polycrystalline diamond using synergies between chemical and mechanical inputs: a review of mechanisms and processes[J]. Carbon, 2022, 196: 29-48.

[44]THORNTON A G, WILKS J. The polishing of diamonds in the presence of oxidising agents[J]. Diamond and Related Materials, 1974(39):39-42.

[45]KUHNLE J, WEIS O. Mechanochemical superpolishing of diamond using NaNO3 or KNO3 as oxidizing agents[J]. Surface Science, 1995, 340: 16-22.

[46]OLLISON C D, BROWN W D, MALSHE A P, et al. A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapor deposited (CVD) diamond[J]. Diamond and Related Materials, 1999, 8(6): 1083-1090.

[47]WANG C Y, ZHANG F L, KUANG T C, et al. Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO3 and KNO3[J]. Thin Solid Films, 2006, 496(2): 698-702.

[48]REN J, ZHANG K L, WANG F, et al. Investigation of diamond films polished by thermal chemical mechanical polishing[J]. ECS Transactions, 2013, 52(1): 517.

[49]YUAN Z W, ZHENG P, WEN Q, et al. Chemical kinetics mechanism for chemical mechanical polishing diamond and its related hard-inert materials[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 1715-1727.

[50]YUAN Z W, JIN Z J, ZHANG Y J, et al. Chemical mechanical polishing slurries for chemically vapor-deposited diamond films[J]. Journal of Manufacturing Science and Engineering, 2013, 135(4): 041006.

[51]TOKUDA N, TAKEUCHI D, RI S G, et al. Flattening of oxidized diamond (111) surfaces with H2SO4/H2O2 solutions[J]. Diamond and Related Materials, 2009, 18: 213-215.

[52]KUBOTA A, FUKUYAMA S, ICHIMORI Y, et al. Surface smoothing of single-crystal diamond (100) substrate by polishing technique[J]. Diamond and Related Materials, 2012, 24: 59-62.

[53]KUBOTA A, NAGAE S, MOTOYAMA S, et al. Two-step polishing technique for single crystal diamond (100) substrate utilizing a chemical reaction with iron plate[J]. Diamond and Related Materials, 2015, 60: 75-80.

[54]KUBOTA A, MOTOYAMA S, TOUGE M. Surface smoothing of a polycrystalline diamond using an iron plate-H2O2 chemical reaction[J]. Diamond and Related Materials, 2016, 69: 96-101.

[55]YUAN S, GUO X G, LI M, et al. An insight into polishing slurry for high quality and efficiency polishing of diamond[J]. Tribology International, 2022, 174: 107789.

[56]KUBOTA A, NAGAE S, TOUGE M. Improvement of material removal rate of single-crystal diamond by polishing using H2O2 solution[J]. Diamond and Related Materials, 2016, 70: 39-45.

[57]YUAN S, GUO X G, HUANG J X, et al. Sub-nanoscale polishing of single crystal diamond (100) and the chemical behavior of nanoparticles during the polishing process[J]. Diamond and Related Materials, 2019, 100: 107528.

[58]GUO X G, YUAN S, WANG X L, et al. Atomistic mechanisms of chemical mechanical polishing of diamond (100) in aqueous H2O2/pure H2O: Molecular dynamics simulations using reactive force field (ReaxFF)[J]. Computational Materials Science, 2019, 157: 99-106.

[59]LIAO L X, LUO S M, CHANG X F, et al. Study on the mechanism of chemical mechanical polishing on high-quality surface of single crystal diamond[J]. Journal of Manufacturing Processes, 2023, 105: 386-398.

[60]ANAN S, TOUGE M, KUBOTA A, et al. Study on ultra precision polishing of single crystal diamond substrates under ultraviolet irradiation[J]. Key Engineering Materials, 2009, 407/408: 355-358.

[61]WATANABE J, TOUGE M, SAKAMOTO T. Ultraviolet-irradiated precision polishing of diamond and its related materials[J]. Diamond and Related Materials, 2013, 39: 14-19.

[62]KUBOTA A, TAKITA T. Novel planarization method of single-crystal diamond using 172 nm vacuum-ultraviolet light[J]. Precision Engineering, 2018, 54: 269-275.

[63]YANG H P, JIN Z J, NIU L, et al. Visible-light catalyzed assisted chemical mechanical polishing of single crystal diamond[J]. Diamond and Related Materials, 2022, 125: 108982.

[64]YANG H P, JIN Z J, NIU H, et al. A novel visible-light catalyzed assisted single crystal diamond chemical mechanical polishing slurry and polishing mechanism[J]. Materials Today Communications, 2022, 33: 104249.

[65]高濂, 鄭珊, 張青紅, 等. 納米氧化鈦光催化材料及應(yīng)用[M]. 北京: 化學(xué)工業(yè)出版社, 2002.

GAO L, ZHENG S, ZHANG Q H, et al. Nanometer titanium oxide photocatalytic materials and their applications[M]. Beijing: Chemical Industry Press, 2002 (in Chinese).

[66]LIU W T, XIONG Q, LU J B, et al. Tribological behavior of single crystal diamond based on UV photocatalytic reaction[J]. Tribology International, 2022, 175: 107806.

[67]苑澤偉, 杜海洋, 何艷, 等. 光催化輔助化學(xué)機(jī)械拋光CVD金剛石拋光液的研制[J]. 金剛石與磨料磨具工程, 2016, 36(5): 15-20.

YUAN Z W, DU H Y, HE Y, et al. Preparation of slurry for photocatalytic assisted chemical mechanical polishing CVD diamond[J]. Diamond & Abrasives Engineering, 2016, 36(5): 15-20 (in Chinese).

[68]SHAO J Y, ZHAO Y J, ZHU J H, et al. A new slurry for photocatalysis-assisted chemical mechanical polishing of monocrystal diamond[J]. Machines, 2023, 11(6): 664.

[69]HAN X S, HU Y Z, YU S Y. Investigation of material removal mechanism of silicon wafer in the chemical mechanical polishing process using molecular dynamics simulation method[J]. Applied Physics A, 2009, 95(3): 899-905.

[70]HARRISON J A, WHITE C T, COLTON R J, et al. Molecular-dynamics simulations of atomic-scale friction of diamond surfaces[J]. Physical Review B, 1992, 46(15): 9700-9708.

[71]HARRISON J A, WHITE C T, COLTON R J, et al. Effects of chemically bound, flexible hydrocarbon species on the frictional properties of diamond surfaces[J]. The Journal of Physical Chemistry, 1993, 97(25): 6573-6576.

[72]HARRISON J A, BRENNER D W. Simulated tribochemistry: an atomic-scale view of the wear of diamond[J]. Journal of the American Chemical Society, 1994, 116(23): 10399-10402.

[73]GAO G T, CANNARA R J, CARPICK R W, et al. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM[J]. Langmuir, 2007, 23(10): 5394-5405.

[74]YANG N, HUANG W, LEI D J. Control of nanoscale material removal in diamond polishing by using iron at low temperature[J]. Journal of Materials Processing Technology, 2020, 278: 116521.

[75]LIN Q, CHEN S L, JI Z, et al. High-temperature wear mechanism of diamond at the nanoscale: a reactive molecular dynamics study[J]. Applied Surface Science, 2022, 585: 152614.

[76]LIN J F, FANG T H, WU C D, et al. Nanotribological behavior of diamond surfaces using molecular dynamics with fractal theory and experiments[J]. Current Applied Physics, 2010, 10(1): 266-271.

[77]YANG N, ZONG W J, LI Z Q, et al. Amorphization anisotropy and the internal of amorphous layer in diamond nanoscale friction[J]. Computational Materials Science, 2014, 95: 551-556.

[78]LIU H Z, ZONG W J, CHENG X. Behaviors of carbon atoms induced by friction in mechanical polishing of diamond[J]. Computational Materials Science, 2021, 186: 110069.

[79]SHI Z Y, JIN Z J, GUO X G, et al. Interfacial friction properties in diamond polishing process and its molecular dynamic analysis[J]. Diamond and Related Materials, 2019, 100: 107546.

[80]SHI Z Y, JIN Z J, GUO X G, et al. Insights into the atomistic behavior in diamond chemical mechanical polishing with OH environment using ReaxFF molecular dynamics simulation[J]. Computational Materials Science, 2019, 166: 136-142.

[81]袁菘, 郭曉光, 金洙吉, 等. 金剛石化學(xué)機(jī)械拋光研究現(xiàn)狀[J]. 表面技術(shù), 2020, 49(4): 11-22.

YUAN S, GUO X G, JIN Z J, et al. Research status on chemical mechanical polishing of diamond[J]. Surface Technology, 2020, 49(4): 11-22 (in Chinese).

[82]YUAN S, GUO X G, LI P H, et al. Insights into the surface oxidation modification mechanism of nano-diamond: an atomistic understanding from ReaxFF simulations[J]. Applied Surface Science, 2021, 540: 148321.

[83]YUAN S, GUO X G, HUANG J X, et al. Insight into the mechanism of low friction and wear during the chemical mechanical polishing process of diamond: a reactive molecular dynamics simulation[J]. Tribology International, 2020, 148: 106308.

[84]YUAN S, GUO X G, MAO Q, et al. Effects of pressure and velocity on the interface friction behavior of diamond utilizing ReaxFF simulations[J]. International Journal of Mechanical Sciences, 2021, 191: 106096.

 

① 凡本網(wǎng)注明"來源:超硬材料網(wǎng)"的所有作品,均為河南遠(yuǎn)發(fā)信息技術(shù)有限公司合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明"來源:超硬材料網(wǎng)"。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。

② 凡本網(wǎng)注明"來源:XXX(非超硬材料網(wǎng))"的作品,均轉(zhuǎn)載自其它媒體,轉(zhuǎn)載目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對其真實(shí)性負(fù)責(zé)。

③ 如因作品內(nèi)容、版權(quán)和其它問題需要同本網(wǎng)聯(lián)系的,請?jiān)?0日內(nèi)進(jìn)行。

※ 聯(lián)系電話:0371-67667020

柘城惠豐鉆石科技股份有限公司
河南聯(lián)合精密材料股份有限公司