在當(dāng)前的超精密加工中,天然單晶金剛石的切削工具已是必不可少。它可獲得極為鋒利的切削刃,其刃口圓弧半徑可以達到連掃描電子顯微鏡(SEM)也無法檢測的程度。據(jù)日本大阪大學(xué)井川直哉教授介紹,最小可達2~4nm,這是當(dāng)前的最高水平,是通過切削獲得的厚為1nm的切屑推算出來的。1986年日本專門成立了一個金剛石刀尖評價委員會,來解決刀尖的測量問題,直至今天仍然沒有很好解決,只是從0.05um提高到2~4nm。1992年東芝機械的淺井昭一也曾提出過利用掃描隧道顯微鏡(STM)或原子力顯微鏡(AFM)進行檢測的建議,但是并沒有再報道過,我國華中理工大學(xué)精儀系在1996年報道了用AFM取得了進展,這是可喜的成就。

切削過程中,金剛石的導(dǎo)熱性優(yōu)越,散熱快,但是要注意切削熱不宜高于700℃,否則會發(fā)生石墨化現(xiàn)象,工具會很快磨損。因為金剛石在高溫下和W、Ta、Ti、Zr、Fe、Ni、Co、Mn、Cr、Pt等會發(fā)生反應(yīng)。
金剛石燒結(jié)體(PCD)
PCD的出現(xiàn),在許多方面代替了天然單晶金剛石。PCD與天然金剛石比較,價格便宜,且刃磨遠(yuǎn)比天然金剛石方便,所以其應(yīng)用、推廣特別迅速。在大量涌現(xiàn)的新材料中,大部分都是難加工材料,如高硅鋁合金,汽車發(fā)動機的活塞大量采用這種材料。一般,含硅量低于10%的鋁合金,用硬質(zhì)合金切削工具即可,但含硅量超過10%,就只能借助PCD。當(dāng)前采用的高硅鋁合金含硅量均在12%以上,有的已達18%以上,所以非PCD莫屬。

但是,由于PCD的種類很多,有合理選擇的必要。其粒度、濃度等都會影響到硬度、耐磨性等性能。因此,在應(yīng)用中也必須根據(jù)被加工材料的種類。硬度等特性來考慮合理的各種參數(shù)。由于其具有各向同性,耐磨性比較好,加工成拔絲模甚至優(yōu)于天然單晶金剛石。
PCD在國內(nèi)外的生產(chǎn)已十分普及,但是質(zhì)量有較大的差異,因此在價格上出入很大。國內(nèi)曾用美國超細(xì)粒度的GE公司的刀片,在PneumoPreci~sion的SMG325超精密機床上做了切削試驗,曾達到接近鏡面的表面粗糙度。
立方氮化硼燒結(jié)體(PCBN)
PCBN是CBN顆粒與結(jié)合劑一起燒結(jié)而成,耐高溫,硬度僅次于金剛石,與黑色金屬無親和力。從發(fā)展的角度來看,許多新材料需用PCBN來加工。比如汽車變速箱的齒輪采用了PCBN的齒輪滾刀,不僅獲得高生產(chǎn)率,且明顯的提高了質(zhì)量,加工面甚至變成了鏡面。據(jù)資料表明,PCBN滾切過的齒輪表面由于硼的滲入,硬度也變高。這是哈工大的實驗所證實的。由于PCBN耐高溫,在大氣和水蒸氣中,在900℃以下無任何變化且穩(wěn)定,甚至在1300℃時,和Fe、Ni、Co等也幾乎沒有反應(yīng),更不會像金剛石那樣急劇磨損,這時它仍能保持硬質(zhì)合金的硬度,因此,它不僅能切削淬火過的鋼零件或冷硬鑄鐵,而且能被廣泛應(yīng)用于高速或超高速的切削工作上。但是,PCBN不適于切削一般的鋼件,因此。選擇工具時必須注意。采購時必須考慮到其粒度、濃度。

超硬材料涂層切削工具
CVD、PVD等技術(shù)的出現(xiàn),是切削工具領(lǐng)域中的一次重大的革命。它的出現(xiàn)立即引起了機械制造領(lǐng)域的巨大反響,理想的切削工具應(yīng)當(dāng)是既有硬的表面,又有高的韌性,涂層技術(shù)便達到了這個目標(biāo)。
最早的涂層材料都是陶瓷性質(zhì)的物質(zhì),如TiN、TiC、Al23O等,近年來,涂層技術(shù)又有了很大的發(fā)展。超硬材料涂層正在得到全面應(yīng)用,許多產(chǎn)品相繼出現(xiàn)在市場上,但國內(nèi)尚處在實驗階段,預(yù)計也會很快突破,超硬材料涂層的發(fā)展,使整個現(xiàn)有的切削工具的性能都明顯得到了提高,面對當(dāng)前大量涌現(xiàn)的難加工材料,這些新發(fā)展的涂層技術(shù)將有巨大的適應(yīng)能力,前景相當(dāng)喜人。
超硬材料涂層的種類共有三大類,即類金剛石、金剛石和CBN。這些涂層材料均為純金剛石或純CBN,所以硬度與沉積的材料是相同的,和PCD與PCBN相比,因不含結(jié)合劑,所以硬度、耐磨性等均有較大的提高。
金剛石涂層和CBN涂層的性能與原材料是相同的,只是薄膜而已,使用時與陶瓷涂層類同。這里著重介紹類金剛石膜。
類金剛石碳(Diamond-LikeCarbon,簡稱DLC)膜具有與金剛石膜相似的優(yōu)異性能,其抗摩擦磨損性能良好,且DLC膜制備工藝日趨成熟,可以在很低的沉積溫度下獲得大面積且表面粗糙度小的DLC膜,而金剛石薄膜則要求較高的沉積溫度(約800℃~1000℃),因此,許多基體材料受到限制,如高速鋼,而且在大面積上沉積均勻也比較困難,表面也粗糙。因此,DLC膜在許多場合更易獲得應(yīng)用,如可作磁盤的保護膜。
在涂層切削工具的使用方面,和陶瓷涂層的一樣,涂層基體也必須作很好的處理。一般基體的硬質(zhì)合金為YG8,其預(yù)處理工藝首先用W1金剛石微粉拋光,再進行表面脫鈷15min,脫鈷液為1:3硝酸水溶液,然后在丙酮中超聲波清洗10min。基體在涂復(fù)之前,清洗的工作極為重要。如果是切削工具,在刃磨中必須保證不能退火。
由于超硬材料涂復(fù)的技術(shù)歷史尚短,還處在發(fā)展之中。相信它也會和陶瓷涂層技術(shù)一樣,會更加完善。
厚膜金剛石
金剛石薄膜的合成技術(shù)和應(yīng)用研究在全球范圍發(fā)展極為迅速,形成了“金剛石薄膜熱”。在這十多年內(nèi),氣相合成的方法發(fā)展到二十多種,一般沉積的速度每小時只1~2um,如何加快沉積速度一直是人們研究的課題。在近期沉積速度發(fā)展到了100um/h以上,最高達到930um/h。我們稱之為厚膜金剛石。我國東方天地金剛石研究所成功地掌握了這門技術(shù),最大的沉積厚度達到了2.3mm?,F(xiàn)在已商品化,進入了國際先進行列。厚膜金剛石不同于PCD之處是沒有結(jié)合劑,是純金剛石,所以它的硬度高得多,與天然金剛石不同,它具有各向同性,成本低,因此在許多方面將取代PCD。用作拔絲模將是均勻磨損,因此拔絲的線材質(zhì)量明顯優(yōu)于天然金剛石模具。如果沉積質(zhì)量進一步提高,在超精密加工中也有取代天然金剛石的可能,因此頗受超精密領(lǐng)域的重視。